If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+30=180
We move all terms to the left:
2x^2+4x+30-(180)=0
We add all the numbers together, and all the variables
2x^2+4x-150=0
a = 2; b = 4; c = -150;
Δ = b2-4ac
Δ = 42-4·2·(-150)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{19}}{2*2}=\frac{-4-8\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{19}}{2*2}=\frac{-4+8\sqrt{19}}{4} $
| 12-7q=15+6q | | 6=4,6+x | | 12-7q=15 | | 46.28=9g+3.71 | | 4=h2+ 3 | | -3.8x=46.74 | | 4z+6z=90 | | (a-2)=4a-(2a-4) | | 5)m+4=-12 | | 9g+3.53=44.30 | | -6=b/1 | | 3t+6=-2t+31 | | 18−3h=12 | | 44.30=9g+3.53 | | (x+5)^2+10(x+5)+21=0 | | -0.07x-0.6=5 | | -8=t-16 | | 2x-22=13 | | -64y+5=29y-2 | | 6y+14=7y+2y=13 | | 3x-(2-7)=15 | | −7/9x=21 | | 5x+30=-x+6 | | 3/4+y=2/3 | | 8(x+2)=# | | -3(2x-3)-2x=11 | | 6p+7=11+5p | | 5x+8x=4x+-7 | | 2+10x+7=3x | | A=1/23.14r2 | | 1x2-2x-5=0 | | 3(m+2)=180 |